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ON T H E  F O R M S  OF R E L A T I O N S H I P  B E T W E E N  

T W O  N O N C O A X I A L  S E C O N D - O R D E R  T E N S O R S  

(THE CASE O F  P L A N E  S T R A I N  O R  A P L A N E  S T R E S S  STATE) 

A. F. Nikitenko UDC 539.376 

A relationship between noncoazial tensors of stress and creep strain rate is established for 
the case of plane strain or a plane stress state. The basis is the experimentally substantiated 
hypothesis on the existence of a creep surface, which is a set of loading paths in the stress space 
that, at any time, ensure identical values of the creep intensity for a certain chosen measure and 
orthogonality of the creep strain rate vector to this surface. The relation obtained completely 
corresponds to available experimental data for complez loading. 

1. Engineering theories of creep are based, as is known, on the assumption of similarity between stress 
deviators and creep strain rate deviators or creep strain deviators [1]. Namestnikov [2-6] studied the agreement 
between theories and experimental data. He noted [2-5] that there is a systematic deviation of experimental 
data from the proportionality of the corresponding deviators. A measure of this deviation is the phase of 
similarity (Novozhilov's terminology), which is the difference in the angle of form between the stress tensor 
and the creep strain rate tensor or the strain tensor (recall that, in the deviator plane, the angle of form of 
the stress tensor determines the direction of the stress intensity vector and the angle of form of the strain rate 
tensor determines the direction of the creep strain intensity vector). 

Further analysis of numerous experimental data assuming coaxiality of the stress tensor and the creep 
strain rate tensor or the creep strain tensor leads to the following conclusions [7-10]. 

(1) The phase of similarity of the corresponding deviators is an odd function of just the angle of form 
of the stress state [10]. 

(2) In the case of a steady stressed state and simple loading, the creep strain rate vector (or the creep 
strain vector) does not change direction during deformation from the moment of application of the load up 
to failure of the specimen. This implies that the phase of similarity of the stress deviator and the creep strain 
rate deviator (or the strain deviator) remains fixed during deformation of the material for both a fixed stressed 
state and proportional loading. Moreover, precisely in these loading regimes, the phase of similarity of the 
stress deviator and the creep strain rate deviator is equal to the phase of similarity of the stress deviator and 
the creep strain deviator [7, 8]. 

(3) In complex loading, the phase of similarity of the stress deviator and the creep strain rate deviator 
undergoes an increment that depends on the increment of the angle of form of the stress state and the sign 
of this increment and tends to zero with time [9]. 

The experimentally observed "deflection" of the creep strain rate vector in the direction of rotation 
of the stress vector in complex loading has been previously explained only by the increment of the phase 
of similarity of the corresponding deviators [9, 11]. This is not always valid. Indeed, in experiments on 
extension-compression with simultaneous torsion of specimens under complex loading, the principal axes 
of the stress tensor change orientat!on. Naturally, the principal axes of the creep strain rate tensor also change 
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orientation. It is clear that in the case of complex loading considered, not only does the phase of similarity of 
the corresponding deviators undergo an increment but also the coaxiality of the stress tensor and the creep 
strain rate tensor is violated. 

To substantiate the last statement, it suffices to analyze the experimental data of [11], obtained on 
specimens loaded by a tensile load with simultaneous application of a torque (the material was St. 45 and 
the test temperature was 400~ The first loading cycle corresponded to a certain combination of tensile 
and shear stresses (point 1 in Fig. 1). 1 The second loading cycle, carried out by steps, corresponded to 
either tension (point 5 in Fig. 1), during which shear strain was accumulated simultaneously with axial strain 
in the specimen material, or pure torsion (point 2 in Fig. 1), during which axial strain was accumulated 
simultaneously with shear strain in the specimen material. In the experiments of [12] on technically pure 
copper at 150~ the first loading cycle corresponded to tension (torsion) of the specimen, and the second 
corresponded to torsion (tension). From analysis of creep curves it follows that  " . . .  after replacement of 
tension by torsion the elongation strain decreases, and after replacement of torsion by tension the shear strain 
decreases. The same was observed previously on I~I-257 steel . . . .  The experimental results agree with none 
of the existing creep theories" [12]. This should be expected because the experimental facts described above 
indicate not only disruption of the similarity between the corresponding deviators but also disruption of the 
coaxiality of the stress tensor and the creep strain rate tensor immediately after the beginning of complex 
loading. 

When the plane V~p - % in which all experimental information on the creep of specimens is presented 
[9, 11], is superimposed on the plane ~r - V~l", in which information on the history of the loading path of 
these specimens is presented, it becomes evident that  the creep strain rate vector is deflected in the direction 
of rotation of the stress vector [9, 11]. Geometric interpretation of the stress-strain state at any point of the 
complex loading path is illustrated in Fig. 2 with the same conventional notation as in Fig. 1: # and 7" are the 
normal and tangential stresses in the cross section of the specimen, #i is the stress intensity, #1 and ~2 are the 
main components of the stress tensor, p and ~ are the axial and shear creep strain, r/i is the creep strain rate 
intensity, r/l and r/2 are the main components of the creep strain rate tensor, and the remaining designations 
are obvious. The magnitude of the above-mentioned deflection, as follows from Fig. 2, is evaluated as the 
difference of the angles ~" = ~1 + a and ~ = ~1 + ~, i.e., ~ = ~ - ~ = ( 6  - ~1) + (a  - ~). 

Obviously, w is the sum of the departure of the corresponding deviators from proportionality, a measure 
of which is ~1 = ~'1 - ~l ,  and the departure of the stress tensor and the creep strain rate tensor from coaxiality, 
a measure of which is ~2 = ot - ~. It is clear that for ~ = 0, w is only a measure of departure of the 
corresponding deviators from proportionality, and for wl = 0, it is only a measure of departure of the stress 
tensor and the creep strain rate tensor from coaxiality. By analogy with the general case, ~ can be called the 
phase of similarity of the deviators as applied to the plane stress state considered. 

1Figure 1 shows a fragment of Fig. 2 in [11]. 
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substantiated hypothesis on the existence of a creep surface [7, 9], which is a set of loading paths in the stress 
space that, at any time, ensure equivalent values of the creep intensity for a chosen measure (hereinafter the 
value of dissipated energy is used as this measure) and orthogonality of the creep strain rate vector to this 
surface. The equation of this surface can be generMly written as (re =const .  

In the case considered, in the plane (r - v/37 ", (re is a closed convex curve [9]. The equation of this 
curve is obtained from the above definition of a creep surface. Obviously, the requirement of equivalence of 
the creep intensity for any loading path reduces to smoothness of the curve of "dissipated work-time": 

d( v~p)  d(r + ~ d(v~)  = 0 (2.1) 
dt 

Since the loading path belongs to (re, equality (2.1) is simultaneously the condition of orthogonality of the 
creep strain rate vector to (re. 

From Fig. 2 it follows that a = ai cos ~, V~T = ai sin ~, and tan ~ = V/'3v/o. Taking this into account, 
from (2.1) we obtain 

r 
/ \ 

(riexp ( - / t a n w d , )  = (r0, w = ~ - ~ ,  (2.2) 
r 

where o ~ and ~0 correspond to the beginning of the loading path. Thus, 

r 

ae = oiexp ( -  f t a n w d ( ) .  (2.3) 
r 

Obviously, if at t ime t, we have w = 0, the contour of equivalent stress states (2.2) is a Mises classical 
circle, i.e., (ri = 0 ~ and (re = 0i. Taking into account that 

d(v%) = ~ 0oe ~ = ~ 0oo 
dt 0o' dt o(~,-) '  

after standard operations using (2.3), we write 

[7 + (r--~-? ~ L (r~ (r2 tan (2.4) 

where W is the energy dissipated during the creep process. 
Relations (2.4) are final. We analyze the implications of these relations. 
(A) In the case of a steady stress state or simple loading, the phase of similarity of deviators, as noted 

above, remains fixed. Let 0 = 0 and r # 0. From (2.4) it follows that 

d-7 = w 0? ' at (r~ t ~ ,  (2.5) 

i.e., in pure torsion, slight axial creep is observed. This was repeatedly detected in the experiments of Trunin 
[13], including experiments on Ti-6AI-4V titanium alloy at room temperature. Axial creep is absent for w = 0. 

(B) We consider complex loading. We assume that, in the first loading stage, a ~ 0 and r = 0 at t ~< tl. 
Obviously, in uniaxial extension-compression, w = 0, and from (2.4) we have 

d(v%) (r d7 
= W --~, - -  = 0. (2.6) 

dt (ri dt 

In the second loading stage, (r = 0 and r ~ 0 at t > tl. In complex loading, as noted above, the phase of 
similarity of the deviators undergoes an increment that tends to zero with time. Thus, in the second loading 
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stage, w # O. Moreover, from the experiments of Sosnin [11] it follows that w < O. From (2.4) we have 

d ( v % )  = W v ~  dr  = W . (2.7) 
d---'~ --~- tan w, d'--t- a~ 

From (2.6) and (2.7) it follows that, after replacement of extension by torsion, the axial creep strain 
decreases. Precisely this result was obtained in the experiments of Namestnikov [12]. 

We now assume that in the first loading stage, a = 0 and r # 0. Then from (2.4) we obtain relations 
(2.5). According to the experiments of [11-13], we set w = 0 in the first loading stage. Then, we have 

d( v~p) dr v~r  (2.8) 
d----7-- - 0, d-7 = W ~--T" 

In the second loading stage at cr # 0 and r = 0, the phase of similarity of the deviators undergoes an 
increment, i.e., w # 0 and, as follows from [11], w > 0. From (2.4) we have 

d ( v % )  _ W ~ d r  - W  ~ 
d---~ r -2' d~- = r 2 tan w. (2.9) 

From (2.8) and (2.9) it is obvious that, after replacement of torsion by extension, the shear creep strain 
decreases. This completely agrees with the experimental results of Namestnikov [12]. 

(C) We consider an example that corresponds to the experimental data of Sosnin [11]. We assume that 
in the first loading stage, a # 0, ~" ~ 0, and w = 0 (point 1 in Fig. 1). Then, we have 

d(Cgp____]) _ w L d~ = w v ~  
dt a 2' at a 2 " 

If in the second stage of complex loading, ~r = 0 and r ~ 0 (point 2 in Fig. 1) or a ~ 0 and r = 0 
(point 5 in Fig. 1), then relation (2.4) immediately leads to relations (2.7) or (2.9), which completely agree 
with the experimental results of Sosnin [11], presented in Fig. I. This follows from analysis of the direction of 
the creep strain rate vector at loading points 2 and 5. 

3. The case of plane strain is considered similarly. After standard operations using (2.2), we obtain 

~= = t 4 4  + ~ tan , ~, = ~ + ~ t a n ~ ,  

~rz --  o'• t a n w l  (3.1) J 
(the dot denotes differentiation in time, the remaining notation is conventional, and the expressions for W, 
cri, and w correspond to the case of plane strain). Relations (3.1) coincide with similar relations obtained by 
a different line of reasoning in [14]. This suggests the reliability of the method of determining the functional 
relationship between two noncoaxial second-rank tensors described in the present paper. 
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